

Available online at www.sciencedirect.com

Polyhedron 22 (2003) 3333–3337

www.elsevier.com/locate/poly

Synthesis and characterisation of cyclo-boratetrasiloxane, $(RBO)(Me₂SiO)₃$ $(R = ⁿBu, Ar)$, derivatives

Michael A. Beckett ^{a,*}, Martin P. Rugen-Hankey ^a, K. Sukumar Varma ^b

^a Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, UK b Pilkington Building Products R and D, European Technical Centre, Lathom, Lancashire L40 5UF, UK

Received 19 June 2003; accepted 28 July 2003

Abstract

Low temperature reactions of dilute solutions of 1,5-dichloro-1,1,3,3,5,5-hexamethyltrisiloxane with boronic acids ${RBO(H)}$; $R = {}^{n}Bu$, C₆H₄Me-2, C₆H₄Me-3, C₆H₄Me-4, C₆H₄OMe-3, C₆H₄OMe-4, C₆H₄Br-2, C₆H₄Br-3, C₆H₄Br-4} in the presence of a twofold excess of Et₃N afforded the 8-membered ring products, cyclo-boratetrasiloxanes, $(RBO)(Me₂SiO)₃$, in moderate yields. New compounds were colourless oils and were characterised by elemental analysis, NMR $(^1H,{}^{11}B,{}^{13}C,{}^{29}Si)$, IR and MS. The $cyclo$ -boratetrasiloxanes are weakly Lewis acidic, with acceptor number (AN) values of \sim 30, but do not form adducts with amines.

2003 Elsevier Ltd. All rights reserved.

Keywords: Cyclo-boratetrasiloxanes; B–O–Si linkages; Cyclocondensation; Lewis acidity

1. Introduction

Cyclic species containing B–O–Si linkages are represented in the literature by a number of 6-, 8- and 10 membered cyclo-borasiloxane ring systems [1–9]. Other compounds containing the B–O–Si linkage are the acyclic triorganosilyl esters of orthoboric [10–19], metaboric [16–18] and boronic acids [16–20], and the condensed borosilicate cage systems [21–24]. In addition to these examples, which all contain 3-coordinate B centres, there are also a few cases of compounds with B– O–Si links in which the B atom is 4-coordinate [25–28]. We are interested in assessing the Lewis acidity at 3-coordinate boron centres in compounds containing B– O–Si linkages and have previously examined triorganosilyl esters [18,29] and cyclo-boratrisiloxane (Fig. 1a) and cyclo-diboratetrasiloxane (Fig. 1b) systems [8,29]. Herein, we report the synthesis of some new *cyclo*boratetrasiloxane (Fig. 1c) derivatives, and an assessment of their Lewis acidities by Gutmann's [30] method.

2. Results and discussion

Cyclo-borasiloxane ring systems are synthetically available by cyclocondensation reactions of appropriate B and Si containing precursors. Organoboronic acids have been successfully condensed with dihydroxysilanes, diethoxysilanes, α , ω -dihydroxysiloxanes, α , ω -diethoxysiloxanes and α , ω -dichlorosiloxanes [1–3,6,7], and dichlorophenylborane has been condensed with dihydroxysilanes [5]. The cyclo-boratetrasiloxanes reported here were prepared by the method of Wannagat and Eisele [3], first employed in the synthesis of (PhBO)- $(SiMe₂O)₂$, by use of an equimolar mixture of the appropriate organoboronic acid with 1; 5-dichloro-1,1,3,3,5,5-hexamethyltrisiloxane, in the presence of two molar equivalents of NEt₃ to act as HCl acceptor, as shown in Scheme 1. The new compounds 1–9 were prepared in modest to moderate yields (22–69%) as colourless oils, after filtration of the reaction mixture to

^{*} Corresponding author. Tel.: +44-1248-351151; fax: +44-1248- 370528.

E-mail address: [m.a.beckett@bangor.ac.uk](mail to: m.a.beckett@bangor.ac.uk) (M.A. Beckett).

^{0277-5387/\$ -} see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0277-5387(03)00478-9

Fig. 1. Schematic structures of (a) cyclo-boratrisiloxanes, (b) cyclo-diboratetrasiloxanes, and (c) cyclo-boratetrasiloxanes. R = alkyl or aryl.

Scheme 1. Synthesis of cyclo-boratetrasiloxane derivatives, Me₆Si3O₄BR {R = C₆H₄Me-2 (1), C₆H₄Me-3 (2), C₆H₄Me-4 (3), C₆H₄OMe-3 (4), C_6H_4OMe-4 (5), C_6H_4Br-2 (6), C_6H_4Br-3 (7), C_6H_4Br-4 (8), nBu (9)}.

remove the solid $[NEt₃H]Cl$, and removal of all volatiles from the filtrate under reduced pressure. Low temperature reagent addition and dilute reaction mixtures were essential in obtaining the desired cyclo-boratetrasiloxanes by limiting polymer formation. Manners and co-workers [7] have previously prepared the cycloboratetrasiloxane, (PhBO)(SiMe₂O)₃, in 74% by this method.

Compounds 1–9 were relatively air-stable but were susceptible to hydrolysis and hence were stored under dry N_2 . Satisfactory elemental (C, H) analysis data were obtained on all compounds, and mass spectrometry and spectroscopic (NMR, IR) data were consistent with the 8-membered ring cyclo-boratetrasiloxane formulation. Additionally, the molecular weight of 3, as determined by freezing point depression of camphor, was also fully consistent with the 8-membered ring formulation.

Thermal analysis over the temperature range 20–750 -C was undertaken on 3 in order to ascertain whether these cyclo-boratetrasiloxanes were possible precursors to Si–O–B ceramics. The TGA trace revealed significant (>80%) weight loss from the sample between 180 and 260 °C, with \sim 100% weight loss by 300 °C. There was no observable sample residue, and the DSC trace displayed an endothermic peak at 220 \degree C, consistent with vaporisation of the sample. Clearly, 3 was not a potential thermal precursor to Si–O–B ceramics.

Mass spectra were obtained for all compounds except 7 and 9. Molecular ions were observed in all cases and breakdown patterns were all generally very similar, and consistent with breakdown patterns reported for other cyclo-borosiloxanes [3,5,7]. In particular, all spectra showed intense peaks at M^+ – CH₃ (base peaks for 1, 2, 3 and 5) with generally relatively weak molecular ion peaks. All spectra also displayed strong signals at *mle* M^+ – 57 (M^+ – SiMe₂ + H), and at *mle* 207 (M⁺-Me-ArBO). IR spectra of all compounds were characterised by very strong absorptions in the 1302–1356 cm⁻¹ and 1049–1078 cm⁻¹ regions due to B–O and Si–O stretching modes, respectively, with additional strong signals at 2962 (C–H), 1261 (B–O), and 808 (O–Si–O bend? [31]) cm⁻¹. ¹¹B NMR spectra all showed one signal in the range expected [32] for trigonal $CBO₂$ centres with the butyl derivative 9 having a resonance significantly to higher frequency of resonances for the aryl derivatives, 1–8. 29Si spectra show two signals at ca. δ -17 separated by ca. 1.5 ppm, with the low frequency signal being approximately of double intensity and assigned to the Si atoms linked via O to B. These observations are in accord with those reported for (PhBO) (SiMe₂O)₃ [7]. The ²⁹Si signals for the butyl derivative (9) are at lower frequency by ca. 1.5 ppm relative to the aryl derivatives 1–8. The number of signals and their relative intensities observed in 1 H NMR spectra of 1–9 were all consistent with their formulations as *cyclo*-boratetrasiloxanes and were characterised by two almost coincidental signals of relative intensity 1:2 centred at ca. 0.2 ppm, associated with the SiMe_2 protons, in proportion to additional signals associated with the organo-B functionality.

We have previously noted that whereas cyclo-boratrisiloxanes were unreactive towards amines, cyclodiboratetrasiloxanes were sufficiently Lewis acidic to form adducts [8,29]. The reaction of the cyclo-boratetrasiloxanes 1–9 with amines was attempted but adducts were not obtained, indicating that they were poor Lewis acids. This was further quantified on selected examples by use of Gutmann's [30,33] method, which confirmed their weak Lewis acidity and gave acceptor number (AN) values of 29, 30 and 30, for 1, 3 and 9, respectively. For comparison, we have previously reported that cyclo-diboratetrasiloxanes had AN values of 47–62 and cyclo-boratrisiloxanes had values of 22–28, and an explanation on their relative Lewis acidities has been offered in terms of competitive O–Si and O–B π -bonding, and the different B:Si ratios within the ring systems [8]. The electronic effect of the ${-\text{SiMe}_2\text{OSiMe}_{2-}}$ and ${-\text{SiMe}_2\text{OSiMe}_2\text{OSiMe}_{2-}}$ fragments towards ${RBO₂}$ must be very similar and this is reflected in their AN values. The slightly higher value (i.e., more acidic nature) of the cyclo-boratetrasiloxane compared to the cyclo-boratrisiloxane may not be significant but is opposite to that expected from the increased Si:B ratio. Ring strain may be an important factor here since adduct formation would lead to a reduction of the ring angle at B, and this is more easily accommodated in an 8-membered ring. Alternatively, it may be that the cyclo-boratrisiloxane has reduced Lewis acidity, when compared to other $cyclo$ -borasiloxanes, since it is formally a 6π -electron system.

3. Experimental

3.1. General

Reactions were carried out under N_2 in dried solvents. The boronic acids and $Si₃Me₆O₂Cl₂$ were obtained commercially and used as supplied. IR spectra were recorded on a Perkin–Elmer FT-IR 1600 spectrometer as thin films between NaCl plates. TGA-DSC analysis on 3 was undertaken on a TA Instruments SDTQ600 thermal analyser. Multi-element solution NMR was recorded on a Bruker AC 250 CP/MAS NMR spectrometer operating at 250.0 MHz for ${}^{1}H$, 80.25 MHz for 11B, 62.90 MHz for 13C, 101.25 MHz for ³¹P and 49.66 MHz for ²⁹Si. Chemical shifts (δ) are given in ppm with positive values towards high frequency from SiMe₄ (¹H, ¹³C, ²⁹Si), BF₃OEt₂ (¹¹B), and 85% H₃PO₄ (31 P). Elemental analyses were obtained on a Carlo Erba EA-1108 (C, H, N) instrument using helium as carrier gas. AN values were obtained as described previously [33] and were referenced against PPh₃ ($\delta = -6.0$) dissolved in CDCl₃ and used a lock. EI (70 eV) MS spectra were obtained on a Finnigan 4500 instrument.

3.2. Synthesis

Boratetrasiloxanes were all prepared by an adaptation of a literature method [3,7], with the procedure described below for $Me₆Si₃O₄B(C₆H₄Me-2)$ (1).

 $Me₆Si₃O₄B(C₆H₄Me-2)$ (1). ortho-Tolylboronic acid, $(C_6H_4Me-2)B(OH)_2$, (1.0 g, 7.4 mmol) was dissolved in anhydrous Et₂O (1000 cm³). NEt₃ (1.56 g, 15.5 mmol) was added and the solution was cooled to -78 °C by means of a dry ice/acetone bath. 1,5-Dichloro-1,1,3,3,5,5 hexamethyltrisiloxane, ClSiMe₂OSiMe₂OSiMe₂Cl, (2.04 g, 7.4 mmol) was added via a dropping funnel over a 1 h period, maintaining the stirred reaction temperature at -78 °C. The reaction mixture was then allowed to warm to room temperature and was stirred for a further 24 h. Filtration of the reaction mixture removed [NEt₃H]Cl, and removal of the $Et₂O$ from the filtrate, under reduced pressure, afforded the product as a colourless oil (1.5 g). Yield 59%. NMR (ppm): $\delta(^1H)$: 7.5 (d, 7.7 Hz, 1H), 7.0 $(m, 3H), 2.4$ (s, 3H), 0.1 (s, 12H), 0.0 (s, 6H); $\delta(^{11}B)$: 24.6; $\delta(^{13}C)$: 144.8, 136.5, 130.4, 130.1, 124.7, 22.8, 0.6, 0.4; $\delta(^{29}\text{Si})$: -16.5, -17.7. IR (cm⁻¹): 2962s, 1599m, 1439m, 1329brs, 1261s, 1143m, 1074brs, 887m, 857s, 808s, 730m, 653m. MS (EI, 70 eV) mlz (%): 340 (20, M⁺), 325 (100, $M^+ - CH_3$), 283 (60), 251 (20), 207 (45, $M^+ - Me - ArBO$), 163 (25), 133 (30). Elemental analysis. Found: C, 45.7; H 7.5%; required for $C_{13}H_{25}BO_4Si_3$: C, 45.9, H, 7.4%.

 $Me₆Si₃O₄ B(C₆H₄Me-3)$ (2). Yield 64%, colourless oil. NMR (ppm): $\delta(^1H)$: 7.7 (m, 2H), 7.35 (m, 2H), 2.4 (s, 3H), 0.3 (s, 12H), 0.2 (s, 6H); $\delta(^{11}B)$: 25.1; $\delta(^{13}C)$: 136.7, 135.8, 134.4, 132.3, 131.7, 127.4, 21.3, 0.6, 0.3; δ (²⁹Si): -16.5, -17.7. IR (cm⁻¹): 2963s, 1423m, 1335s, 1310brs, 1261s, 1214m, 1128m, 1078brs, 885m, 858m, 844m, 808s, 709s. MS (EI, 70 eV) m/z (%): 340 (15, M⁺), 325 (100, $M^+ - CH_3$), 283 (48, $M^+ - SIMe_2 + H$), 251 (14) , 207 (36, M⁺ – Me – ArBO), 191 (35), 163 (16), 133 (29). Elemental analysis. Found: C, 45.6; H, 7.5%; required for $C_{13}H_{25}BO_4Si_3$: C, 45.9; H, 7.4%.

 $Me₆Si₃O₄B(C₆H₄Me-4)$ (3). Yield 35%, colourless oil. NMR (ppm): $\delta(^1H)$: 7.6 (d, 7.7 Hz, 2H), 7.1 (d, 7.7 Hz, 2H), 2.3 (s, 3H), 0.2 (s, 12H), 0.1 (s, 6H); δ (¹¹B): 25.2; $\delta(^{13}C)$: 141.1, 135.4, 134.7, 128.4, 21.7, 0.7, 0.4; $\delta(^{29}Si)$: $-16.6, -17.8$. IR (cm⁻¹): 2962m, 1610m, 1400m, 1315brs, 1261s, 1141m, 1075brs, 885m, 858m, 807s. MS (EI, 70 eV) m/z (%): 340 (25, M⁺), 325 (100, M⁺ – CH₃), 283 (73, M^+ – SiMe₂ + H), 251 (10), 207 (50, M⁺ – Me – ArBO), 191 (52), 163 (40), 133 (48). Elemental analysis. Found: C, 45.7; H, 7.4%; required for $C_{13}H_{25}BO_4Si_3$: C, 45.9; H, 7.4%. Rast's method for molecular weight determination: 3 (0.021 g) was dissolved in molten camphor (0.4958 g) and allowed to solidify. M. pt 173 \degree C. Calculated Molecular weight, 336 g/mol [34].

 $Me₆Si₃O₄B(C₆H₄OMe-3)$ (4). Yield 65%, colourless oil. NMR (ppm): $\delta(^1H)$: 7.4 (m, 3H), 7.1 (m, 1H), 3.9 (s, 3H), 0.4 (s, 12H), 0.2 (s, 6H); $\delta(^{11}B)$: 24.8; $\delta(^{13}C)$: 159.1,

136.0, 128.7, 127.7, 120.4, 116.6, 55.1, 0.7, 0.4; $\delta(^{29}Si)$: $-16.6, -17.6$. IR (cm⁻¹): 2961s, 1596m, 1575m, 1485m, 1464m, 1446m, 1421s, 1309brs, 1261s, 1243s, 1182m, 1122s, 1049brs, 944m, 884s, 858s, 805s, 708s, 685m, 673m. MS (EI, 70 eV) m/z (%): 356 (85, M⁺), 341 (60, $M^+ - CH_3$), 299 (65, $M^+ - SiMe_2 + H$), 207 (70, $M^+ - Me - ArBO$, 91 (100), 73 (88). Elemental analysis. Found: C, 43.6; H, 7.2%; required for $C_{13}H_{25}BO_5Si_3$: C, 43.8; H, 7.1%.

 $Me₆Si₃O₄B(C₆H₄OMe-4)$ (5). Yield 69%, colourless oil. NMR (ppm): $\delta(^1H)$: 7.6 (d 7.7 Hz, 2H), 6.9 (d, 7.7 Hz, 2H), 3.7 (s, 3H), 0.15 (s, 12H), 0.05 (s, 6H); $\delta(^{11}B)$: 24.7; d(13C): 162.1, 137.1, 126.2, 113.1, 55.1, 0.7, 0.4; δ (²⁹Si): -16.2, -17.7. IR (cm⁻¹): 2961s, 1603s, 1408m, 1316brs, 1261s, 1174m, 1143m, 1075brs, 885m, 858m, 808s, 649m. MS (EI, 70 eV) mlz (%): 356 (100, M⁺), 341 $(83, M⁺ - CH₃), 299 (100, M⁺ - SiMe₂ + H), 207 (74,$ $M^+ - Me - ArBO$), 91 (98), 73 (28). Elemental analysis. Found: C, 43.5; H, 7.2%; required for $C_{13}H_{25}BO_5Si_3$: C, 43.8; H, 7.1%.

 $Me₆Si₃O₄B(C₆H₄Br-2)$ (6). Yield 49%, colourless oil. NMR (ppm): $\delta(^1H)$: 7.54 (m, 1H), 7.49 (m, 1H), 7.1 (m, 2H), 0.9 (s, 12H), 0.1 (s, 6H); $\delta(^{11}B)$: 24.3; $\delta(^{13}C)$: 138.2, 135.7, 132.6, 130.0, 127.2, 3.3, -0.2 ; $\delta(^{29}\text{Si})$: $-15.8, -17.6$. IR (cm⁻¹): 2962s, 1588m, 1557m, 1425m, 1356brs, 1307s, 1261s, 1143m, 1055brs, 881m, 805s. MS (EI, 70 eV) m/z (%): 406 (8, M⁺), 391 (58, M⁺ – CH₃), 349 (25, $M^+ - Sime_2 + H$), 267 (70), 207 (60, $M^+ - Me - ArBO$, 191 (63), 147 (100), 91 (68). Elemental analysis. Found: C, 35.3; H, 5.6%; required for $C_{12}H_{22}BBrO_4Si_3$: C, 35.6; H, 5.5%.

 $Me₆Si₃O₄B(C₆H₄Br-3)$ (7). Yield 41%, colourless oil. NMR (ppm): $\delta(^1H)$: 7.9 (m, 1H), 7.7 (m, 1H), 7.6 $(m, 1H), 7.3$ $(m, 1H), 0.3$ (s, 12H), 0.16 (s, 6H); $\delta(^{11}B)$: 23.9 ; $\delta(^{13}C)$: 138.0, 133.8, 133.6, 129.4, 122.4, 0.7, 0.4; δ (²⁹Si): -16.4, -17.3. IR (cm⁻¹): 2963s, 1302brs, 1261s, 1147m, 1075brs, 910m, 882m, 855s, 808s, 704m. Elemental analysis. Found: C, 35.3; H, 5.7%; required for $C_{12}H_{22}BBrO_4Si_3$: C, 35.6; H, 5.5%.

 $Me_6Si_3O_4B(C_6H_4Br-4)$ (8). Yield 30%, colourless oil. NMR (ppm): $\delta(^1H)$: 7.5 (d, 7.7 Hz, 2H), 7.35 (d, 7.7 Hz, 2H), 0.1 (s, 12H), 0.0 (s, 6H); $\delta(^{11}B)$: 24.9 ; $\delta(^{13}C)$: 136.9, 136.3, 132.4, 130.8, 126.0, 0.6, 0.3; $\delta(^{29}Si$: -16.3, -17.3 . IR (cm⁻¹): 2962s, 1586s, 1387s, 1340brs, 1310s, 1262s, 1138s, 1069brs, 1012s, 883m, 856s, 807s, 725m, 643m. MS (EI, 70 eV) m/z (%): 406 (10, M⁺), 391 (58, M^+ – CH₃), 349 (12, M^+ – SiMe₂ + H), 281 (5), 249 (32), 207 (100, $M^+ - Me - ArBO$), 177 (38), 133 (65), 91 (64). Elemental analysis. Found: C, 35.4; H, 5.8%; required for $C_{12}H_{22}BBrO_4Si_3$: C, 35.6; H, 5.5%.

 $Me₆Si₃O₄BBuⁿ$ (9). Yield 22%, colourless oil. NMR (ppm): $\delta(^1H)$: 1.3 (m, 4H), 0.85 (t, 7.7 Hz, 3H), 0.69 $(m, 2H), 0.15$ (s, 12H), 0.1 (s, 6H); $\delta(^{11}B)$: 31.3; $\delta(^{13}C)$: 26.8, 25.4, 14.0, 0.9, 0.7. 0.3; $\delta(^{29}\text{Si}): -17.1, -19.3$. IR (cm-1): 2961s, 2928m, 2873m, 1329brs, 1284m, 1260s, 1052brs, 891m, 855m, 803s. Elemental analysis. Found: C, 39.4; H, 8.8%; required for $C_{10}H_{27}BO_4Si_3$: C, 39.2; H, 8.9%.

Acknowledgements

We thank the EPSRC and Pilkington Plc for financial support through a CASE studentship.

References

- [1] K.A. Andrianov, T.V. Vasileva, R.A. Romanova, Dokl. Akad. Nauk. SSSR 168 (1966) 1057; Chem. Abs. 65 (1966) 12227.
- [2] K.A. Andrianov, T.V. Vasileva, Kremniiorg. Soedin. Tr. Soveshch. 3 (1967) 51; Chem. Abs. 69 (1968) 87069.
- [3] U. Wannagat, G. Eisele, Z. Naturforch. 33B (1978) 475.
- [4] D.A. Foucher, A.J. Lough, I. Manners, J. Organomet. Chem. 414 (1991) C1.
- [5] A. Mazzah, A. Haoudi-Mazzah, M. Noltemeyer, H.W. Roesky, Z. Anorg. Allg. Chem. 604 (1991) 93.
- [6] B.J. Brisdon, M.F. Mahon, K.C. Molloy, P.J. Schofield, J. Organomet. Chem. 436 (1992) 11.
- [7] D.A. Foucher, A.J. Lough, I. Manners, Inorg. Chem. 31 (1992) 3034.
- [8] M.A. Beckett, D.E. Hibbs, M.B. Hursthouse, K.M.A. Malik, P. Owen, K.S. Varma, J. Organomet. Chem. 595 (2000) 241.
- [9] A.G. Avent, S.E. Lawrence, M.M. Meehan, T.G. Russell, T.R. Spalding, Collect. Czech. Chem. Commun. 67 (2002) 1051.
- [10] R.H. Krieble, US Patent 2440101 (1948); Chem. Abs. 42 (1948) 6376.
- [11] N.V. Orlov, B.N. Dolgov, M.G. Voronkov, Khim. i Prakt. Primen. Kremneorg. Soedin. Trudy Konf., Leningrad 1 (1958) 161; Chem. Abs. 54 (1960) 4360.
- [12] B.N. Dolgov, Y.I. Khudobin, N.P. Kharitonov, Dokl. Akad. Nauk. SSSR 122 (1958) 607; Chem. Abs. 53 (1959) 4110.
- [13] M.G. Voronkov, N.F. Orlov, Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1 (1961) 93; Chem. Abs. 58 (1963) 2466.
- [14] M.G. Voronkov, V.N. Zgonnik, Zhur. Obschchei Khim. 27 (1957) 1476; Chem. Abs. 52 (1958) 3673.
- [15] S.K. Mehrotra, G. Srivastava, R.C. Mehrotra, Ind. J. Chem., Sect. A 14 (1976) 137.
- [16] S.K. Mehrotra, G. Srivastava, R.C. Mehrotra, J. Organomet. Chem. 73 (1974) 277.
- [17] E.W. Abel, A. Singh, J. Chem. Soc. (1959) 690.
- [18] M.A. Beckett, P. Owen, K.S. Varma, J. Organomet. Chem. 588 (1999) 107.
- [19] D. Murphy, J.P. Sheehan, T.R. Spalding, G. Ferguson, A.J. Lough, J.F. Gallagher, J. Mater. Chem. 3 (1993) 1275.
- [20] A.F. Mingotaud, V. Heroguez, A. Soum, J. Organomet. Chem. 560 (1998) 109.
- [21] G. Ferguson, B.J. O'Leary, D.M. Murphy, T.R. Spalding, J. Organomet. Chem. 526 (1996) 195.
- [22] A.T. O'Dowd, T.R. Spalding, G. Ferguson, J.F. Gallagher, D. Reed, J. Chem. Soc. Chem. Commun. (1993) 1816.
- [23] F.J. Feher, T.A. Budzichowski, J.W. Ziller, Inorg. Chem. 31 (1992) 5100.
- [24] L.A. Neville, T.R. Spalding, G. Ferguson, Angew. Chem. Int. Ed. Engl. 39 (2000) 3598.
- [25] R. Koster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 597.
- [26] G. Ferguson, A.J. Lough, J.P. Sheehan, T.R. Spalding, Acta Crystallogr., Sect. C 47 (1991) 379.
- [27] R. Koster, G. Siedel, G. Muller, Chem. Ber. 124 (1991) 1017.
- [28] G. Ferguson, J. Gallagher, D. Murphy, J.P. Sheehan, T.R. Spalding, Polyhedron 12 (1993) 859.
- [29] M.A. Beckett, P. Owen, K.S. Varma, in: M.G. Davidson, A.K. Hughes, T.B. Marder, K. Wade (Eds.), Contemporary Boron Chemistry, The Royal Society of Chemistry, Cambridge, 2000, p. 100.
- [30] U. Mayer, V. Gutmann, W. Gerger, Monatsheft. Chem. 106 (1975) 1235.
- [31] C. Zha, G.R. Atkins, A.F. Masters, J. Non-Cryst. Solids 242 (1998) 63.
- [32] H. Noeth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, in: P. Diehl, E. Fluck, R. Kosfeld (Eds.), NMR Basic Principles and Progress, vol. 14, Springer, Berlin, 1978, p. 140.
- [33] M.A. Beckett, G.C. Strickland, J.R. Holland, K.S. Varma, Polymer 20 (1996) 4629.
- [34] B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell (Eds.), Vogels Textbook of Practical Organic Chemistry, 5th ed., Longman, UK, 1989, p. 243.